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SUMMARY
In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide
distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors,
little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex
physiologic networks generate lifespan variation, new methods are needed.
Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic popu-
lations to study the processes generating lifespan variation. By collecting thousands of single-individual tran-
scriptomes, we capture theCaenorhabditis elegans ‘‘pan-transcriptome’’—a highly resolved atlas of non-ge-
netic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of
total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging,
driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demon-
strates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual dis-
parities in aging.
INTRODUCTION

In most species, including humans,1,2 mice,3 and nematodes,4–7

aging individuals exhibit a remarkable degree of physiologic het-

erogeneity that ultimately leads to a wide distribution of lifespan.

Twin and familial studies suggest that less than thirty percent of

inter-individual differences in lifespan are caused by heritable

factors,8,9 and laboratory studies demonstrate that controlling

for both genetic and environmental variation does little to reduce

lifespan variation.3–5 Diverse cellular and organismal mecha-

nisms have been found to influence a population’s average life-

span, including endocrine signaling, metabolism, protein ho-

meostasis, and many others,10–16 and yet it remains unclear

how such mechanisms influence the physiologic heterogeneity

driving lifespan variance.

A fundamental barrier to building mechanistic models of phys-

iologic heterogeneity in aging multicellular systems is the multi-

scale functional interdependence of the mechanisms involved.

Though a wide variety of mid-life physiologic measurements

have been found to predict the lifespan of individuals within
All rights are reserved, including those
genetically homogeneous populations,1–7,17–22 it remains chal-

lenging to identify the specific processes converting physiologic

differences between individuals mid-life into lifespan differ-

ences. The mechanisms driving aging act not in isolation

but embedded as components of complex homeostatic net-

works23—a barrier for many conventional experimental ap-

proaches that struggle in the presence of feedback loops and

one-to-many interactions. Despite recent progress in unicellular

organisms,22,24 new methods are needed to build mechanistic,

dynamical models of multicellular aging.

Here, we describe Asynch-seq, an interdisciplinary combina-

tion of experimental and modeling approaches that lets us sys-

tematically identify the molecular mechanisms driving non-ge-

netic physiologic heterogeneity and lifespan variation. Taking

advantage of the speed and scalability of modern RNA

sequencing (RNA-seq) technologies, we generate an atlas of

the non-genetic heterogeneity in gene expression that arises

de novo during adulthood. We then model these gene-expres-

sion data and identify the mechanisms acting during adulthood

to generate one-third of all gene-expression variance. Finally,
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in a series of perturbation experiments, we demonstrate that

direct manipulation of the mechanisms generating physiologic

heterogeneity in aging can dramatically reduce that heterogene-

ity to produce better andmore equal outcomes in aging across a

population.

RESULTS

A high-resolution atlas of non-genetic, inter-individual
variation in gene expression
To measure non-genetic variation, we first needed a high-

throughput method that would let us systematically quantify

gene-expression differences within isogenic populations.

To collect transcriptomic data at the scale and quality

required, we optimized the Smart-Seq2 single-cell sequencing

protocol25,26 to accurately estimate inter-individual gene-

expression variance (STAR Methods).

We applied this method to compile an atlas of non-genetic

gene-expression variation in aging that includes not only wild-

type populations but also a set of mutations and environmental

conditions known to alter lifespan. Our atlas contains 2,764

single-individual transcriptomes (Data S1), including (1) a longi-

tudinal time series containing wild-type individuals collected

every second day from day 1 until day 12 and (2) a very high sta-

tistical resolution comparison of wild-type young (day 1) and

aged (day 8) individuals across multiple replicates. On days 1

and 8, we also observed (3) long-lived insulin/IGF receptor daf-

2(e1368) mutants, (4) germline-ablated glp-1(e2141) mutants,

(5) wild-type individuals whose lifespan was extended by a diet

of ultraviolet (UV)-light-inactivated E. coli, and, finally, (6) individ-

uals whose lifespan was shortened by exposure to elevated

environmental temperature (20�C vs. 25�C) from hatching un-

til death.

Our atlas reveals a striking degree of inter-individual heteroge-

neity present in the transcriptomes of wild-type populations. We

find that transcriptomes are not uniformly variable and that at

any age some genes exhibit 100-fold higher variance compared

with the least variable genes at equivalent mean expression

(Figures 1A–1C; Data S2). We find that 78% of all transcripts

show significant increases in variance between days 1 and 8

(Figures 1D and S1S; Data S3; Wald p < 0.01; studentized boot-

strap), highlighting a systematic age-associated increase in non-

genetic variation across the transcriptome. Crucially, we find that

47% of the transcriptome shows age-associated increases in

variance without large changes in the mean (Figure 1D inset;

mean fold-change R 21.5 and Wald p < 0.01), signifying a type

of gene-expression heterogeneity not captured by bulk or stan-

dard single-cell sequencing approaches. During aging, our re-

sults show that wild-type, age-synchronous individuals become

physiologically heterogeneous in respect to almost half of their

transcriptome.

Inter-individual variation alignswith population-average
changes only during the second half of adulthood
A common assumptionmade in aging studies is that non-genetic

heterogeneity arises as the result of individuals following the

same stereotyped aging trajectory but at different rates.5,18,27,28

To evaluate this assumption, we performed a principal-compo-
2 Cell 187, 1–17, July 25, 2024
nent analysis (PCA) of our aging time series data and inspected

the trajectory that individuals take along the first two principal

components (PCs) that together explain 58.7% of all variance

(Figure 1F). We observe more complex dynamics than antici-

pated—during the first 6 days of adulthood, cohorts progress

on average along PC2, which explains only 9.1% of variance,

but on day 6 they turn to progress along a diagonal in respect

to both PC1 and PC2 (Figure 1F inset, blue arrow). Within popu-

lations on each day, we find that inter-individual variations do not

consistently fall along the same path that populations follow on

average over time. Instead, at all ages, individuals throughout

life appear to vary along a diagonal of PC1 and PC2 nearly

orthogonal to the population-average trajectory until day 6 (Fig-

ure 1F, red arrows). We conclude that the non-genetic variation

in aging does not arise primarily from individuals following a

stereotyped aging trajectory at different rates. Therefore, our

data motivate a rethinking of a large class of ‘‘pseudo-time’’

models18,27,29,30 conventionally used to estimate an individual’s

‘‘biological age’’ as distinct from their ‘‘chronological’’ age, as

these methods miss potentially crucial physiologic differences

between age-synchronous individuals. Instead, alternate ap-

proaches for understanding non-genetic variation in aging are

needed.

Inter-individual differences in aging involve a
decoupling of germline and somatic gene expression
To identify the mechanisms generating non-genetic variability in

our atlas, we first focused on the genes with the highest variance

in old (day 8) populations, which we find are enriched31 for genes

involved in stress and pathogen responses,19,32 sperm physi-

ology, and vitellogenin yolk production during oogenesis.33

Because the reproductive system plays a fundamental, evolu-

tionarily conserved role in aging,34–44 we then set out to under-

stand the role of germline gene expression in non-genetic

variation.

To distinguish between changes in germline and somatic gene

expression, we considered 658 genes previously identified45 as

being expressed predominantly in single tissue types: the hypo-

dermis, muscle, neurons, the alimentary system, including the

pharynx and intestine, and the germline (STAR Methods). Aging

in many species involves large changes in cell-type composi-

tion,46,47 and to study this in individual C. elegans we grouped

genes according to their tissue of origin and on day 8 observed

a strong positive correlation among genes expressed in the

same tissue type (Figure 2A). We further observed strong nega-

tive correlations between germline-specific and soma-specific

genes, demonstrating that in aged individuals, somatic genes

co-vary together as a group, germline genes co-vary together

as a group, and these two groups exhibit partial independence

in their variation (Methods S1).

To quantify changes in germline and somatic mRNA in single

individuals, we included synthetic RNA spike-ins in our

sequencing approach that allowed us to perform absolute quan-

tification of mRNA abundance (STAR Methods). We find that, at

the start of adulthood (day 1), individuals show substantial differ-

ences in the overall amount of total mRNA in their bodies—some

individuals have larger transcriptomes than others—but within

each individual the amounts of germline and somatic mRNA
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Figure 1. A population-scale atlas of non-genetic heterogeneity

(A) mRNA was separately obtained from 1,042 genetically identical individuals either in youth (black; day 1) or old age (red; day 8). Population mean and variance

are shown for each transcript (points).

(B and C) Two examples, nlp-28 (pink diamond) and eif-2 beta (blue diamond), are highlighted along with (B) the distribution of expression levels observed across

individuals in youth (C) and old age.

(D) Age-associated changes in gene-expression mean and variance (day 8 vs. day 1) were estimated for each transcript (points). Genes are colored according to

their significant increase ([), decrease (Y) (p < 0.001,Wald test), or no change (Ø) inmean (M) and variance (V) with age:MYV[ (blue); MØV[ (orange); M[V[ (red);

MYVØ (pink); MØVØ (gray); M[VØ (brown); MYVY (green). (D) (inset) The proportion of transcripts in each category.

(E) Individuals (points) from seven separate age cohorts are projected onto the first and second principal components (PCs) of gene expression. Outlined circles

indicate cohort averages, connected by lines. (E) (inset) The non-genetic differences between individuals within each cohort (red arrows) do not align with the

population-average aging trajectory (blue arrow) until old age.

See also Figure S1.
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are highly correlated. We observe age-associated declines in

this correlation, dropping from a Pearson correlation of r =

0.94 on day 1 to r = 0.64 on day 12 (Figures 2B and 2C). This

drop in correlation is the result of disproportional decreases in

somatic and germline mRNA content, starting on day 4

(Figures S2A and S2B). Our data highlight both the existence

of some mechanism for coordinating the balance of germline
and somatic mRNA content in young individual animals and

the failure of this mechanism during aging.

To confirm and characterize the failure of coordination be-

tween germline and somatic mRNA content that occurs during

aging, we attempted to induce the failure experimentally.

Applying a tissue-specific RNA interference (RNAi) strategy,48

we inhibited germline transcription via knockdown of RNA
Cell 187, 1–17, July 25, 2024 3



Figure 2. Aging involves a decoupling of germline and somatic mRNA content

(A) Transcripts expressed only in single tissue types were hierarchically clustered according to their co-expression across aged individuals (day 8). Pearson

correlations (r) range from �1 (blue) to 0 (white) to 1 (red).

(legend continued on next page)
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polymerase II (RNA Pol II) subunits rpb-2 or ama-1. By day 8, we

find that experimental disruption of germline RNA Pol II pro-

duced global changes in organismal gene expression,

decreasing germline mRNA in proportion to somatic mRNA

(Figures 2D and S2C). The effects of germline rpb-2 and ama-1

knockdown recapitulate the naturally arising differences we

observe between aged individuals: the magnitude of each

gene’s change after rpb-2 knockdown is strongly correlated

with that gene’s weight in the first principal component (PC1)

of the wild-type day 8 covariance matrix (Figures 2D and S2C).

Importantly, each gene’s weight in PC1 quantifies that gene’s

contribution to the largest axis of non-genetic variation in unper-

turbed populations. Therefore, we conclude that experimental

inhibition of germline transcription can reproduce the differences

in germline and somatic mRNA that exist between aged

individuals.

We then used the gene-expression signature of rpb-2 knock-

down to quantify how the coordination of germline and somatic

mRNA content naturally changes with age. We observe a high

correlation between germline rpb-2 knockdown and the PC1,

both in the young population (day 1 r = 74.8%) and aged popu-

lation (day 8 r = 79.7%). However, the fraction of all variation ex-

plained by PC1 doubles during aging, from 21.5% to 40.6%

between days 1 and 8 (Figures 2D and S2D). This doubling dem-

onstrates that the contribution to overall gene-expression varia-

tion made by individual differences in somatic and germline

mRNA content increases with age. To confirm that such effects

are not specific to any particular method of germline gene

expression suppression, we also compared the gene-expres-

sion signatures of two temperature-sensitive mutations that

disrupt germline gene expression by ablating the germline—

glp-1(e2141) and glp-4 (bn2)49,50—and identified the same re-

sults as with rpb-2(RNAi) (Figures S2E–S2H).

Taken together, our analyses demonstrate that the single

largest contributor to non-genetic variation in C. elegans aging

is a decoupling of germline and somatic mRNA content.

Germline ablation decreases non-genetic gene-
expression variation in aging
We then asked whether the germline itself might play a causal

role in generating non-genetic gene-expression variation.

Measuring old (day 8) germline-ablated glp-1(e2141) individuals,
(B) Each individual’s total germline and somatic mRNA contents are compared w

(C) The Pearson correlation between germline and somatic mRNA in successive

(D) A separate population was exposed to germline-specific knockdown of RN

knockdown (y axis) is compared with that transcript’s weight in the first principa

contribution of each transcript to non-genetic variation along the PC1 of young (

(E) The same RNA Pol II knockdown effects are compared with the first PC1 of ger

(F) To identify global differences in transcriptome covariance between wild-type (

between all transcript-pairs are shown for day 8 cohorts, and comparedwith the s

wild-type cohort (blue).

(G) Wild-type (black) and glp-1(e2141) (red) individuals on day 8 are projected on

(H) The lifespans of glp-1(e2141) individuals are compared with those of wild-typ

(I) The variance in lifespan for both populations estimated using Weibull paramet

(J) The AFT regression residuals for both populations highlight disproportional d

(K) To quantify any disproportional effect of glp-1(e2141) on lifespan variance, w

siduals, with bootstrap 95% confidence intervals.

See also Figure S2.
we observe global decreases in gene-expression variance rela-

tive to wild type. In germline-ablated populations, genes show

on average 25% (23%–28% bootstrap confidence interval [CI])

lower expression variance (Figure S2I). We find that this

decrease involves both a cell-autonomous germline activity to

eliminate high-variance germline-specific genes and also a

cell-non-autonomous germline activity to decrease the vari-

ability of soma-specific genes (Figures S2J and S2K). These re-

sults highlight the causal role played by the germline in gener-

ating gene-expression variation in aging.

Repeating our PCA on the germline-ablated population, we

identify a dramatic reduction in the correlation between PC1

and germline-specific rpb-2(RNAi) effects (Figure 2E), demon-

strating that the germline is required specifically for the

emergence of inter-individual variance along PC1 in wild-type

populations. The total amount of variance explained by PC1 in

germline-ablated populations is much lower than that explained

by PC1 in wild-type populations: 10.1% in germline-ablated

compared with 40.6% in wild type on day 8—a side-effect of

the global 5-fold decrease in the covariance among all genes

in germline-ablated populations relative to wild type (Figure 2F).

We conclude that, following germline ablation, individuals not

only differ less from each other but also differ in a less ‘‘struc-

tured’’ way, such that individuals differ across a larger number

of independent dimensions of gene expression (e.g., PCs, Fig-

ure S2C). The germline generates 25% of all non-genetic gene-

expression variance, while directing this variance along a single

organismal gene-expression axis (Figures 2G and S2L).

Germline ablation halves inter-individual variation in
healthspan and lifespan
Germline ablation via glp-1(e2141) is well known to extend mean

lifespan51 through partially characterized signaling pathways.38

We therefore considered the possibility that the germline might

contribute to lifespan variation. First, we confirmed previous find-

ings that glp-1(e2141) germline ablation increases lifespan (Fig-

ure 2H). Then, remarkably,wefind that our high-resolution lifespan

data reveal a largedecrease in lifespanvariance3.8 (3.1–4.6)days2

in glp-1(e2141) populations compared with 7.6 (6.8–8.5) days2 in

wild type (Figure 2I). Such large, opposing effects on lifespan

mean and variance are unprecedented in any lifespan-altering

intervention, as mutations, diets, and environmental conditions
ithin young (day 1) and old (day 12) cohorts.

age cohorts, with 95% confidence bands (pink).

A polymerase II (RNA Pol II), and the response of each transcript (points) to

l component (PC1) (x axis) of wild-type individuals. PC1 weights quantify the

top) and aged (bottom) cohorts.

mline-ablated glp-1(e2141) cohorts of young (top) and old (bottom) individuals.

black) and glp-1(e2141) (red) cohorts, the distributions of pairwise correlations

ame distribution for a randommatrix generated by permuting gene names in the

to PCs 1 and 2 obtained from a PCA of both genotypes combined.

e individuals, shown as Kaplan-Meier survival estimates.

ric fits, with 95% confidence intervals.

ifferences in lifespan variance relative to the mean.

e calculated the ratio of variances of the two populations’ AFT regression re-
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Figure 3. A perturbation screen to identify molecular drivers of non-genetic heterogeneity

(A) We use transcriptome scaling models (TSMs) to quantify the extent to which non-genetic differences between aged individuals (white circles) fall along single,

treatment-defined (pink circle), gene-expression axes (pink line).

(B) In a screen of 104 treatments, we identify 40 TSM hits—non-genetic variation mimetics (NVMs)—that define axes explainingmore than 10% (gray line) of non-

genetic variance within aged (day 8) wild-type cohorts. Additional treatments are shown in Figure S3F; bootstrap 95% CIs.

(C) All treatments were hierarchically clustered according to correlations in the fold-change effect of each treatment on gene expression. Dissimilar groups are

highlighted (colored arches).

(D) The 40 hit NVM treatments were clustered according to correlations in the scale factors assigned by TSMs to individuals in the wild-type day 8 cohort along

each NVM’s axis.

(E and F) For example, (E) the scale factors assigned to individuals (black dots) along the pap-1(RNAi) axis are correlated to the scale factors assigned along the

nlp-15(RNAi) axis. (F) The same, but highlighting an anti-correlation between vha-11 and pcn-1 scale factors.

(G) The fold-change effects of pap-1 and nlp-15 on gene expression (top), with genes (points) colored according to their weight in first principal component (PC1)

of the wild-type day 8 cohort, with a linear regression line (black). (Bottom) The same analysis comparing pcn-1 and vha-11.

(H) Our results suggest a model in which treatments produce pleiotropic effects on gene expression, having different overall effects (colored outer circles) relative

to wild type (blue circle) but all sharing projections along a shared axis of non-genetic variation of aged wild-type individuals (white circles).

(legend continued on next page)
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that alter lifespan usually produce exactly proportional changes in

lifespan variance.52 To quantify the disproportional effect of germ-

line ablation on lifespan mean and variance, we fit an accelerated

failure time (AFT) regressionmodel (Figure 2J) to our data. We find

that glp-1(e2141) populations show a 2.4-fold (1.9–3.1) lower vari-

ance inAFT residuals comparedwithwild type, demonstrating that

the intact germline is required for 58% (47–68%)of all lifespanvari-

ation in wild-type populations (Figure 2K). Next we considered a

widelyusedbiomarker of organismal ‘‘health’’ inmodel organisms,

vigorous movement,7,20,53 and found that germline ablation ex-

tends vigorous movement from an average of 11.6 (11.4–11.8)

days in wild-type to 14.0 (13.7–14.3) days in glp-1(e2141) popula-

tions (FiguresS2MandS2N)while simultaneouslydecreasingvari-

ance from 7.1 (6.4–7.8) to 5.3 (4.7–6.0) days2—a disproportional

decrease in variance of 2.0-fold (1.6–2.6) (Figures S2O–S2Q).

Our results demonstrate that the germline plays a central role in

generatingage-associatedheterogeneity, notonly ingeneexpres-

sion but also in health and lifespan. By ablating the germline, we

can alter the intrinsic biological generation of lifespan variation,

yielding more equal outcomes in respect to multiple aging

phenotypes.

Transcriptome scaling analysis quantifies non-genetic
variation along experimentally defined axes
We then set out to systematically identify additional mechanisms

that generate physiologic heterogeneity during aging. To apply

our high-throughput RNA-sequencing strategy to this task, we

developed a computational approach to predict any gene’s

contribution to inter-individual physiologic heterogenity. Our

analysis of rpb-2(RNAi) suggests that some genes can

contribute to inter-individual heterogenity by scaling each indi-

vidual’s transcriptome in a manner similar to what is observed

in response to those genes’ knockdown. Therefore, we devel-

oped transcriptome scaling models (TSMs) that take a set of sin-

gle-individual transcriptomic data, such as our atlas, and project

it onto a single high-dimensional vector describing the effects of

some experimental intervention—e.g., the RNAi knockdown of a

candidate gene. Using TSMs, we can quantify the amount of

gene-expression variance present between individuals that can

be explained by those individuals varying along a single gene-

expression axis defined by the experimental intervention

(Figures 3A and S3A). Formally, ifC and T are the transcriptomes

of control and treated populations, respectively (Figure 3A red

and blue circles), a TSM decomposes the transcriptome of

each individual, yi, into two parts: a scale factor li that measures

the individual’s position along the C/T axis and a residual ei that

quantifies deviations from scaling (Figure 3A dotted lines; STAR

Methods). TSMs are related to existing methods proposed to

decompose organismal gene-expression signatures into con-

stituent parts,27,54 but crucially they allow us to rapidly screen in-

terventions using bulk transcriptomic methods and identify

genes that contribute to inter-individual heterogeneity in aging.
(I and J) (I) PC1 of the wild-type day 8 cohort (x axis) compared to PC1 of the corp

shifts gene expression, on average, along the same axis that old individuals vary

(K) Aged wild-type individuals (white circles) vary as if random subsets of NVMs

See also Figure S3.
To test the method, we applied our TSM approach to confirm

results obtainedpreviously byPCA.UsingTSMs to study inter-in-

dividual variation on day 8 along the glp-1(e2141) axis, we find

that 21% (95% CI 18%–25%) of all gene-expression variance

can be explained by differences between individuals’ somatic

and germline mRNA content (Figures S3B–S3D). Furthermore,

using TSMs, we can confirm pseudo-time approaches assigning

individuals a single biological age capture of less than 10% of all

gene-expression variance in the first half of life (Figure S3E).

A systematic screen for genetic and environmental
drivers of non-genetic variation in aging
We then performed a large-scale perturbation screen to system-

atically identify mechanisms that contribute to non-genetic vari-

ation in gene expression, health, and lifespan. We explored two

classic sources of phenotypic heterogeneity in biological sys-

tems—extrinsic and intrinsic55—by exposing individuals to

different diets, temperatures, mutations, and an RNAi knock-

down screen of 94 genes selected based on these genes’

high-connectivity in the co-expression graph generated from

our non-genetic variation atlas (STAR Methods; statistical

methods).

We identify 40 ‘‘hit’’ treatments that define physiologic axes

along which inter-individual variation explains at least 10% of to-

tal population gene-expression variation (Figures 3B and S3F).

We name these treatments ‘‘non-genetic variation mimetics’’

(NVMs), based on their ability to reproduce the gene-expression

differences that we observe to arise naturally between old,

genetically identical individuals. We see a large degree of molec-

ular diversity among these 40 NVMs, including tissue-specific

genes localized not only to the germline but also to the muscle,

hypodermis, pharynx/intestine, and neurons. These NVMs

exhibit diverse molecular functions, including cell-cycle regula-

tion, endocrine signaling, lysosomal function, mitochondrial

ATP synthesis, metabolism, and ribosomal function. Taken

together, our results show that the knockdown of genes with

diverse molecular functions located in multiple tissue types

can recapitulate the differences we observe arising naturally be-

tween genetically identical individuals during aging.

Surprisingly, neither the changes in temperature nor diet we

considered acted as NVMs. We conclude that variation in indi-

vidual responses to these environmental factors are not a direct

source of non-genetic variation in aging. Instead, our screen

demonstrates that the intrinsic mechanisms represented by

our 40 NVM genes are the largest source of physiologic hetero-

geneity in aging.

Screen hits have dissimilar effects on organismal gene
expression but all influence germline and somaticmRNA
content
We then sought to identify any functional similarity between the 40

NVMs we identified. Hierarchical clustering reveals seven distinct
us of NVM knockdown effects (y axis), demonstrating that (J) NVM knockdown

naturally in aging.

(colored circles) had been knocked down (yellow Xs).
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Figure 4. A new class of molecular drivers of non-genetic variation in lifespan

(A and B) Several non-genetic variation mimetics (NVMs) were chosen for additional phenotyping. (A) The lifespan of populations exposed to nlp-28(RNAi) or (B)

skr-1(RNAi) started at the beginning of adulthood (late L4), plotted as Kaplan-Meier survival estimates.

(C) Estimates for the changes in lifespan produced by each NVMwhen knocked down, either at the beginning (red) or on the 4th day (blue) of adulthood. Estimates

were obtained using accelerated failure time (AFT) regression; stars indicate Wald significance at p < 0.05.

(D and E) (D) AFT regression residuals are plotted for the nlp-28 and (E) skr-1 knockdowns shown in (A) and (B), highlighting disproportional effects on lifespan

variance relative to the mean.

(legend continued on next page)
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effects on gene expression produced by NVM knockdown

(Figures 3C, S3G, and S3H), suggesting that these genes do not

form a single gene-regulatory pathway.56 We next asked whether

NVMs interact by regulating each other’s expression. Although

knockdown of several NVMs significantly alters the expression

of several others (Figures S3J and S3K), the NVMs are not all

co-expressed during wild-type aging and instead form several

loosely co-expressed groups (Figure S3L). We therefore conclude

that our NVMs do not form a single gene-regulatory group.

Because the NVMs appeared dissimilar in many respects, we

hypothesized that their knockdowns’ mimicry of non-genetic vari-

ation might involve different aspects of aging—each NVM reflect-

ing a qualitatively different way in which old individuals differ.

Surprisingly, when we fit scaling models using each NVM to the

wild-type day 8 cohort, we observe a striking similarity across all

NVMs. The scale factors assigned by all NVMs, including glp-

1(e2141), are strongly correlated, demonstrating that all NVMs

define a single shared axis of inter-individual variation (Figure 3D).

For example, we find that individuals with high scale factors along

the pap-1(RNAi) axis—a conserved poly(A) RNA polymerase—

also have high scale factors along the nlp-15(RNAi) axis—an

endocrine signaling peptide involved in movement and body

morphology (Figure 3E). We therefore conclude that, despite the

apparent dissimilarity in the functions of nlp-15 and pap-1, their

knockdowns shift gene expression along a shared gene-expres-

sion axis. Intriguingly, scaling models for vha-11(RNAi) and pcn-

1(RNAi) assign anti-correlated scale factors across the day 8 pop-

ulation (Figure 3F), suggesting that these knockdowns produce

shifts in opposite directions along the same axis. Despite an

apparent dissimilarity in function and regulation, the 40 NVMs

define a single axis of inter-individual variation in aging.

Though NVM knockdowns produce poorly correlated effects

on the whole transcriptome, they nevertheless may produce

correlated effects on a subset of the transcriptome. Comparing

NVM knockdowns to PC1 of the wild-type day 8 cohort, we

find that genes with high PC1 weights tend to be strongly up-

or downregulated by NVMs (Figure 3G, red and blue points).

Because PC1 captures inter-individual differences in total germ-

line and somatic mRNA content, we conclude that NVM knock-

downs all alter the balance of total germline and somatic mRNA

content (Figure S3), despite these genes having overall dissimi-

lar, pleiotropic influences on organismal gene expression (Fig-

ure 3H; Data S4 and S5).

Insummary,wefind that thebalanceofgermlineandsomatic to-

talmRNA is a polygenic trait, central to non-genetic variation in ag-

ing, and the shared target of all hits from our perturbation screen.
(F) Disproportional changes in lifespan variance and mean are quantified using

bootstrap 95% confidence intervals.

(G) The total number of progeny produced per individual (points) after life-long N

(H) RPB-2::GFP (yellow) allows rapid in vivo quantification of germline morpholog

(I and J) (I) We performed automated counting of mitotic and meiotic nuclei to m

germline morphology, as imaged on day 8; scale bars, 40 mM.

(K) Quantification of the total number of mitotic/early mitotic nuclei present per gon

germline ablation (GA). Stars indicate significance at p < 0.05 in log-linear regres

(L) The effect of the same treatments on body size.

(M) Taken together, our data suggest that knockdown of different NVMs (colored c

variance, as well as the balance of germline and somatic mRNA content, withou

See also Figure S4.
Intrinsic variation in NVM expression is sufficient to
generate the non-genetic variation of germline and
somatic mRNA in old cohorts
Our results reveal a striking equivalence between the conse-

quences of extrinsic experimental modulation of physiologic net-

works and the intrinsic non-genetic variation in organismal gene

expression in aging. We find that PC1 of the NVM knockdown

corpus is highly correlated with PC1 of the wild-type day 8 pop-

ulation (Figures 3I and S3S), meaning that aged individuals vary

as if each individual had been exposed to a different, randomly

selected NVM knockdown (Figures 3J and 3K). Our data suggest

that the natural variation we observe in the expression levels of

any single NVM in young adulthood (Figure S3I) is qualitatively

sufficient to generate the naturally arising differences in organ-

ismal gene expression produced by aging.

NVMs mediate up to half of wild-type lifespan variance
We then investigated whether any NVMs influence lifespan. Out

of 18 tested, all NVM knockdowns significantly altered lifespan,

with six decreasing and the remainder increasing lifespan

(Figures 4A–4C and S4A). For many of the NVM genes, knock-

down starting on day 4 was sufficient to extend lifespan, demon-

strating that these NVMs act late in life, after the prime reproduc-

tive period, to determine wild-type lifespan.

We then asked how NVM genes contribute to lifespan vari-

ance. Remarkably, we identify 14 NVMs whose knockdown at

the start of adulthood produces large decreases in lifespan vari-

ance (Figures 4D–4F and S4B). Notably, the knockdown of

aexr-1, nlp-28, and mak-1 reduced lifespan variance by almost

half—equivalent to the effect of germline ablation via glp-

1(e2141). Knockdown of four targets, including mak-1, was suf-

ficient to reduce lifespan variation started on day 4 of adulthood

(Figure S4C). Furthermore, we find that the NVMs whose knock-

down produces the largest reductions in lifespan variance also

reduce variance in a common measure of organismal health—

vigorous movement span (Figures S4D and S4E). Our data high-

light a central role for NVMs in generating physiologic heteroge-

neity during adulthood that leads to inter-individual differences in

healthspan and lifespan.

Disruption to germline structure and function is not an
inherent part of NVM activity
We then asked whether all our NVMs act like glp-1(e2141) to

ablate the germline and eliminate progeny production. Ten out

of twenty NVM genes tested significantly decreased (p < 0.05,

Wald test) total fecundity when knocked down either from the
the ratio of variances in the two populations’ AFT regression residuals, with

VM knockdown.

y; scale bars indicate 250 mM.

easure (J) the effects of NVM knockdown from the beginning of adulthood on

ad arm in each individual (points) exposed to NVM knockdown or glp-1(e2141)

sion models.

ircles) similarly alters a physiologic target required for generating half of lifespan

t necessarily altering germline morphology.
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Figure 5. A partial decoupling of lifespan mean and variance

(A and B) (A) The fold-change in gene-expressionmean and (B) variance across the transcriptome between days 1 and 8 compared betweenwild type and insulin/

IGF signaling daf-2(e1368)mutants. Genes (points) are colored according to statistically significant changes with age (p < 0.001,Wald test), using the same colors

as in Figure 1D.

(C) A transcriptome scaling model (TSM) was estimated comparing each non-genetic variation mimetic (NVMs) to the set of wild-type (x axis) or daf-2(e1368) (y

axis) single-individual transcrioptomes, measured on day 8. The fraction of variance explained by each TSM, compared for daf-2(e1368) and wild-type

populations.

(D–F) The same as (A–C), but comparing wild-type to glp-1(e2141) populations.

(G) Kaplan-Meier estimates for the lifespan of germline-ablated glp-1(e2141) (red) and intact glp-1(+) (black) individuals either with wild-type DAF-2(+) (solid) or

low DAF-2(�) (dashed) insulin/IGF signaling (IIS) achieved by auxin-inducible degradation of DAF-2::AID at 25�C.

(legend continued on next page)
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start of adulthood (Figure 4G) or at hatching (Figure S4D). How-

ever, nine NVMs had no effect and one, C08H9.15, increased

brood size. We conclude that, though many NVMs contribute

to fertility, this action is not inherent to their contribution to phys-

iologic heterogeneity in aging.

During aging, changes in stem cell activity and number pro-

duce dramatic changes in germline morphology.57 We find that

the knockdown of some, but not all, NVMs alters germline

morphology. By day 8, knockdown of pcn-1 almost entirely elim-

inates meiotic and mitotic cells in the germline, much like glp-

1(e2141) (Figures 4H–4K). However, the knockdown of other

NVMs, includingmak-1, col-122, and aexr-1, produced no signif-

icant effects on germline cell number. We find that knockdown of

aexr-1, vha-11, and col-122 produces organismal changes in so-

matic morphology, increasing individuals’ overall body size on

day 8 (Figure 4L). Taken together, our data clarify that the influ-

ence of many NVMs on non-genetic variation is not mediated

by their influence on reproduction (Figure 4M). Rather, the

knockdown of several NVMs can dramatically reduce lifespan

variance while maintaining a fertile and morphologically intact

germline.

Conventional lifespan-extending treatments do not alter
inter-individual variation in somatic and germline mRNA
content
We then sought to connect the activity of NVMs to a variety of

mechanisms previously shown to determine the rate of aging

in C. elegans. Previous work has suggested that reductions in

gene-expression variation might be an important activity of

many lifespan-extending treatments,58 and, to measure this

directly, we investigated the effect of four lifespan-altering inter-

ventions on gene-expression variation: a lifespan-extending

mutation in the insulin/IGF receptor daf-2(e1368),16,17,59 a life-

span-extending ablation of the germline via glp-1(e2141), a life-

span-shortening increase in body temperature from 20�C to

25�C,60 and a dietary change: UV irradiation of the bacterial

food source.32

We find that daf-2(e1368) extends lifespan by 32% (95% CI

24%–40%), while producing only small changes to gene-expres-

sion mean or variability on day 8 (Figures 5A, 5B, and S5A–S5C).

Age-associated changes in per-gene-expression variance in

daf-2(e1368) showed a 79% correlation with those in wild type

(Data S2) and, on day 8, daf-2(e1368) produced a significant dif-

ferential expression in only 6%of genes’ mean and 7%of genes’

variance (Figure S5D; p < 0.001; studentized bootstrap; Data

S3). Remarkably, the NVM genes knocked down in wild-

type populations explained similar fractions of total non-genetic

variation in daf-2(e1368) populations, as in wild type (Figures 5C

and S5E). Vice versa, NVM knockdown performed in a daf-

2(e1368) background explained similar fractions of total non-ge-

netic variation of wild-type populations, as in daf-2(e1368)
(H) Quantification of the variance of each population using Weibull parametric fit

(I and J) The AFT regression residuals for the same populations as (G), highlighti

(K) Estimates of any disproportional effects of glp-1(e2141) on lifespan variance re

(L) These results suggest a model in which aging individuals move on an aging lan

and individuals’ noisy motion in respect to that drift (red) are influenced by distin

See also Figure S5.
(Figures S5F and S5G). Therefore, we conclude that daf-

2(e1368) extends lifespan without modifying the influence of

NVMs on the age-associated decoupling of germline and so-

matic mRNA content.

Increases in body temperature and changes in diet pro-

duced more substantial changes in gene-expression variance

(Figures S5I–S5L and S5N–S5Q) than daf-2(e1368) but, again,

did not substantially disrupt the relationship between NVM

genes and non-genetic variation (Figures S5M and S5R). We

therefore conclude that diverse lifespan-extending interventions

act without substantially changing non-genetic variation in germ-

line and somatic mRNA content. In stark contrast, germline abla-

tion via glp-1(e2141) produced a 20% lifespan extension while

dramatically altering variation in the transcriptome. By day 8,

germline ablation mostly preserved the age-associated changes

inmean expression seen in wild type (Figure 5D) but substantially

lowered transcriptome variation (Figures 2F, 5E, and S5H). The

NVM genes identified in wild-type populations explained essen-

tially none of the gene-expression variation present in germline-

ablated populations (Figure 5F).

Germline ablation makes the aging process less noisy,
but daf-2 knockdown does not
Because daf-2(e1368) and glp-1(e2141) mutations produced

dramatically different effects on gene-expression variation, we

then set out to understand how the two mutations interact to

determine lifespan variation. To characterize any epistatic inter-

actions between insulin/IGF signaling (IIS) and the germline on

lifespan variance, we measured the effects of auxin-mediated

DAF-2 degradation61 in populations with or without a germline.

We find that glp-1(e2141) extends lifespan and decreases life-

span variance in both IIS conditions (Figures 5G and 5H). Germ-

line ablation disproportionally reduced variance 1.76-fold (95%

CI 1.35–2.26) and 2.52-fold (95% CI 1.98–3.32) in wild-type

and low IIS backgrounds, respectively (Figures 5I–5K), as quan-

tified by an AFT regressionmodel (STARMethods). From this, we

conclude that the germline functions to generate lifespan vari-

ance independently from the context of a population’s IIS state.

These lifespan data reveal a striking genetic decoupling of the

determinants of lifespan mean and variance. In the demographic

literature, a decoupling of lifespan mean and variance is often

described as a ‘‘frailty’’ phenomenon62 in which some random

variable Z generates individual deviations from the population

hazard function hðtÞ, such that an individual’s hazard function

becomes hiðtÞ = ZhðtÞ. The context-independence of glp-

1(e2141) effects relative to daf-2 activity suggests that the

germline acts to increase the variance of some Z in contrast to

disruption to IIS, which affects a scaling transform52 of hðtÞ.
Although demographicmodels usually attribute changes in frailty

to environmental heterogeneity, our data suggest that the germ-

line acts as an intrinsic biological source of frailty.
s.

ng disproportional changes in lifespan variance.

lative to mean in both IIS conditions, with bootstrap 95% confidence intervals.

dscape shaped such that directions of population-average drift (blue) over time

ct mechanisms.

Cell 187, 1–17, July 25, 2024 11



Figure 6. Inter-individual heterogeneity within cohorts can be used to predict the effect of interventions on aging

(A) Community analysis identifies 16 robust co-expression groups of genes in thewild-type day 8 cohort, visible after controlling for individual variation in germline

and somatic mRNA content. The residual correlations among 1,893 genes are shown, grouped according to genes’ co-expression group and hierarchically

clustered.

(legend continued on next page)
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Our results further allow us to continue previous efforts to

describe organismal aging dynamics in respect to a single state

variable r that determines lifespan according to dr
dt = � krFðrÞ,

where kr FðrÞ is an unknown function of r that does not depend

on the aging rate kr .
52 The activity of the germline suggests

that we add a noise term into this equation: dr
dt = � krFðr; ZÞ,

where Z is a random variable influenced not only by germline

ablation but also by all of the NVMs we identify—in contrast to

daf-2 knockdown, which alters only kr (Figure 5L). This model

places a constraint on any stochastic process proposed to

determine lifespan, as its parameters must change in a coordi-

nated fashion in response to changes in kr and Z. For example,

even absent knowledge of the exact form of Fðr; ZÞ, we can

conclude that any biomarker intended to measure r and to pre-

dict remaining lifespan must have its variance in age-synchro-

nous cohorts reduced by any intervention that reduces the vari-

ance of Z.

Sixteen additional axes of inter-individual variation
Though our perturbation screen identified many NVMs, we find

that they all contribute to a single aspect of non-genetic variation

in aging—the balance of somatic and germline mRNA content.

To identify any additional axes of non-genetic variation present

in aged (day 8) wild-type populations, we pursued a separate

analysis strategy, first controlling for individual variation in so-

matic and germline mRNA content (Methods S1) and then iden-

tifying any residual co-expression between genes across the

transcriptome (STAR Methods). We identify 16 robust co-

expression groups (Figures 6A, 6B, S6A, and S6B; Data S7) in

the residual co-expression matrix that contain between 27

(G16) and 403 (G1) genes each. Each group includes a distinct

and mostly non-overlapping set of genes that co-vary together

between individuals in the aged (day 8) cohort—in effect, a

sixteen-dimensional state-space in respect to which old individ-

uals differ (Figure S6C).

Eleven of these 16 co-expression groups emerge progres-

sively throughout adulthood (Figures S6D and S6E)—their cohe-

sion (STAR Methods) begins low and increases with age. The

other five groups (G2, G6, G9, and G15) do not exhibit age-asso-

ciated changes. Eleven groups contain tissue-specific genes

from several different tissues, revealing a cross-tissue regulation

of gene expression. Most groups contain a large fraction of

genes conserved between nematodes and humans—30% of

genes across all groups are conserved. Taken together, these

analyses highlight the phenomenological richness of aging

captured our atlas of non-genetic variation. Furthermore, these
(B) The same co-expression groups shown as a graph, with genes (small circles) co

in expression. Genes are colored according to their tissue-specific expression fo

(C) In aged (day 8) wild-type individuals (points), we plot the relationship between e

somatic and germline mRNA content. This balance is estimated using a transcri

tistical significance of the log-linear relationship is indicated for each group as *p

(D) The residual covariance of gene expression in the day 8 wild-type cohort (x

measured after knockdown of one gene (black label in upper right corner) on all o

membership in (C) The nine best-predicted RNAi treatments are shown.

(E) For 55 out of 85 RNAi treatments, there is a significant relationship (p < 0.0

expression measured after knockdown (Bonferroni-corrected p values; Wald tes

See also Figure S6.
analyes identify, super-imposed on top of global changes in so-

matic and germlinemRNA content, 16 additional axes of non-ge-

netic variation.

Seven out of 16 co-expression groups showed a correlation in

their expression between individuals, with the scale factors as-

signed by NVM models (Figures 6C, S6G, and S6H), suggesting

that these co-expression groups have some degree of functional

interaction with the mechanisms coupling somatic and germline

mRNA content. However, the remaining 9 groups show weak or

no correlation with NVM scale factors, highlighting the existence

of independent axes of non-genetic variation produced by aging.

These co-expression groups can be used as a reference with

which to investigate the contribution of specific molecular

mechanisms to the non-genetic variation in aging. For example,

the enrichment in G3 of targets differentially regulated by

atfs-1(et18)63 suggests that differential activation of systemic

mitochondrial unfolded protein response signal64 might

contribute to non-genetic organismal heterogeneity in aging,

and a similar enrichment in G4 of MPK-1 and PMK-1 targets63

suggests a variable activation of the ubiquitin-proteasome sys-

tem65 among aged individuals.

Membership in expression groups predicts the effect of
interventions on aging
To understand the physiologic relevance of the co-expression

groups we identified, we returned to perturbation screen data

collected earlier. Remarkably, we find that even after normal-

izing for differences in individuals’ germline and somatic

mRNA content, co-expression patterns across aged wild-type

individuals reflect the gene-expression changes produced by

RNAi knockdown of many different targets. Specifically, when

considering the expression of two genes, A and B, we find

that an RNAi knockdown of gene A produces a larger change

in the expression of gene B when A and B are strongly corre-

lated in the aged cohort’s residual co-expression matrix (Fig-

ure 6D). This correspondence between knockdown effects

and co-expression within cohorts was significant for 55 out of

the 85 knockdown targets (Figure 6E; STAR Methods). We

therefore conclude that gene co-expression data within cohorts

reflect physiologically relevant axes of individual variation that

mediate, in part, the effects of experimental perturbations

to aging.

We note that the correspondences we identify between natu-

rally arising inter-individual differences within aged cohorts and

the effect of interventions on aging may be useful for future ef-

forts toward rational intervention design. In aging research,
nnected by lines indicating positive (red) or negative (blue) residual correlations

llowing the same scheme as in Figure 2D.

ach co-expression group’s (G1–G16) expression and an individuals’ balance of

ptome scaling model (TSM) along the glp-1(e2141) axis (STAR Methods). Sta-

< 0.05, **p < 0.01, ***p < 0.001.

axis) is used to predict (Methods S1) the fold-change in expression (y axis)

ther genes (points). Each gene is colored according to its co-expression group

1; horizontal line) between Asynch-seq predictions and fold-changes in gene

t).
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interventional experiments are usually time-consuming and

costly and any method that can predict in advance the effect

of interventions in a systematic way could efficiently direct

experimental efforts. The non-genetic variation atlas collected

using our approach captures important information that can sup-

port such predictions.

DISCUSSION

In animals, lifespan appears to be a quantitative trait influenced

bymanymolecular mechanisms.16,66,67 In this study, we demon-

strate how such mechanisms can be identified using naturally

arising stochastic variations in gene expression within isogenic

cohorts. We then demonstrate that it is possible to produce dra-

matic reductions in age-associated physiologic heterogeneity,

not by controlling extrinsic factors like diet or environment but

rather bymanipulating the intrinsic sources of inter-individual dif-

ferences in aging.

In yeast, age-associated changes in cell physiology result in

individuals being canalized into two discrete pathological

states.24 In C. elegans, we find that aging works differently:

changes across a diverse set of genes result in individuals being

canalized onto a single continuous axis of organismal gene

expression. Though we do not know yet how physiologic hetero-

geneity is canalized during human aging, our study suggests a

path forward via the systematic measurement and modeling of

physiologic heterogeneity. The physiologic axes of inter-individ-

ual variability may differ between species—for example, for mice

in which VEGF overexpression increases lifespan,68 it stands to

reason that non-genetic variation in any mechanism involved in

capillary maintenance may contribute to lifespan variance

through the same physiologic interactions altered by VEGF over-

expression. However, because a functional interdependence

among organs, tissues, and cells is a fundamental architectural

feature of all multicellular life, the canalization phenomenon iden-

tified here is likely widespread.

The resolving power of Asynch-seq is limited mostly by the

population sizes considered and not by the rate of aging. There-

fore, Asynch-seq side-steps many of the practical challenges

inherent in longitudinal aging studies by recognizing that the ef-

fects of aging, slowly accumulated over a lifetime, can be

measured andmodeled using the physiologic heterogeneity pre-

sent within a single cross-sectional study. Our work here focuses

on gene expression, but the approach can be applied, in

principle, to any quantitative high-dimensional measurement,

including proteomic and metabolomic methods. We envision

that, just as statistical genetics techniques like genome-wide as-

sociation studies (GWAS) benefit from large-scale population

sequencing efforts, Asynch-seq can be scaled up to obtain

increasingly resolved mechanistic models of non-genetic varia-

tion in aging.

Limitations of the study
Our study relies on gene-expression measurements as a proxy

for the physiologic state of an individual. Aspects of physiology

that differ between old individuals without measurably influ-

encing organismal gene expression are not considered. Further-

more, our study identifies the intrinsic mechanisms generating
14 Cell 187, 1–17, July 25, 2024
lifespan variance only for populations housed in standard

culturing conditions and a few common alternatives, including

different temperatures and food sources. We do not know how

other environments might influence the relative contributions of

genes to lifespan, healthspan, and gene-expression variance,

motivating future studies. Finally, our study identifies the mech-

anistic drivers of only half of wild-type lifespan variance within

isogenic populations and leaves the remaining 50% of lifespan

variance unexplained, for now.
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Deposited data

C. elegans Wormbase reference genome release WS265; 2018 https://wormbase.org

Code for this project Github https://github.com/nstroustrup/asynch-seq-2024

mRNA sequencing data This paper NCBI Sequence Read Archive (SRA)
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Experimental models: Organisms/strains

C. elegans wild type N2 Fernandes de Abreu et al.70 QZ0 (N2)

C. elegans: Strain: AMP100: ieSi57

[eft-3p::TIR1::mRuby::unc-54 3’UTR] II;
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This study AMP100

C. elegans: Strain: AMP101:

[eif-3p::TIR1::mRuby::tbb-4 3’UTR +

Cbr-unc-119(+)] II;
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TATCAACGCAGAGTACATrGrG+G

Picelli et al.26 N/A

Software and algorithms

BEDTools Quinlan and Hall72 https://bedtools.readthedocs.io/en/latest/

CellPose Stringer et al.73 https://www.cellpose.org/

DESeq2 Love et al.74 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

featureCounts version 2.0.0 Liao et al.75 https://subread.sourceforge.net/

featureCounts.html

InfoMap Rosvall and Bergstrom76 https://www.mapequation.org/

STAR version 2.6.0c Dobin et al.77 https://www.encodeproject.org/

software/star/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nicholas
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Materials availability
All nematode strains used in this study are available from the Caenorhabditis Genetics Center (CGC) and are available from the au-

thors upon request.

Data and code availability
d Transcriptomic data is available from the NCBI Sequence Read Archive (SRA) under BioProjectID PRJNA1015633.

d Gene lists and model parameters are provided as supplemental data files. Analysis source code is provided in Data S8, with

updated versions available from a github repository published at https://github.com/nstroustrup.

d Any additional information required to reanalyze the data reported is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Caenorhabditis elegans
The wild-type parent used in this study is theC. elegans Bristol strain N2 (QZ0). The relevant mutations used in this study are: QZ120:

daf-2(e1368), CB4037: glp-1(e2141), SS104: glp-4(bn2), Germline-specific RNAi line DCL569: mkcSi13 [sun-1p::rde-1::sun-1

3’UTR + unc-119(+)] II; rde-1(mkc36), AMP116: ieSi57 [eif-3p::TIR1::mRuby::tbb-4 3’UTR + Cbr-unc-119(+)] II; daf-2(syb1177)(daf-

2::AID::TEV::3xFLAG) II; glp-1(e2141) III, AMP100: ieSi57 [eft-3p::TIR1::mRuby::unc-54 3’UTR] II; rpb-2::degron::3XFlag::GFP III,

AMP101: [eif-3p::TIR1::mRuby::tbb-4 3’UTR + Cbr-unc-119(+)] II; daf-2(syb1177)(daf-2::AID::TEV::3xFLAG) III, GFP-tagged RNA

Polymerase II line CER510: rpb-2::GFP(dpiRNA)::AID::3xFLAG ) and AMP254: rpb-2[rpb-2::EGFP::AID::3xFLAG(ohm50)] III;

glp-1(e2141) III; ieSi57 [eft-3p::TIR1::mRuby::unc-54 3’UTR + Cbr-unc-119(+)] II. Unless otherwise specified, nematodes were

maintained on NGM agar plates seeded with live NEC937 B (OP50 DuvrA; KanR)69 at 20 �C. Populations were synchronized using

hypochloride treatment. For auxin-inducible degradation experiments, populations were treated with 500uM Potassium

1-Naphthaleneacetate. RNA-interference constructs were obtained from the Ahringer library.

METHOD DETAILS

mRNA sequencing
To obtain an accurate and cost-effectivemethod to capture population-scale gene expression variation, we started with Smart-Seq2

mRNA sequencing,26 a technology recently explored for organismal measurements.25 To optimize this method for population-scale

nematode studies, we needed to alter the protocol as in C. elegans Smart-Seq2 cDNA libraries we found that approximately 80% of

transcripts map to a 2300bp fragment of the 3509bp 26s rRNA rrn-3.1 (Figure S1A) in the genomic region I:15064838-15068346. This

region terminates in a cytosine triplet—absent in mammalian genomes—which we realized had the potential to directly interact with

the ribonucleotide guanosine triplet present in Smart-Seq2 template-switching oligomers (TSO). We confirmed the interaction by

showing that rrn-3.1 was amplified by the Smart-Seq2 protocol even in the absence of poly-dT primers (Figure S1B). To eliminate

this aberrant TSO priming, we modified the Smart-Seq2 protocol by introducing biotinylated poly-dT primers, allowing subsequent

purification of mRNA and elimination of TSO-primed cDNAmolecules. Our approach increased the effective read depth ofC. elegans

Smart-Seq2 libraries by 4.57 fold (Figure S1C;Methods S1), dramatically reducing the sequencing cost in preparation for population-

scale experimentation. The purification also eliminates any E. coli derived transcripts which also lack poly-A tails. Our approach did

not alter the fidelity of Smart-Seq2, as we saw only 293 transcripts (adjusted p-value < 0.001) (Figure S1D) differentially expressed

between the standard and modified protocols, twenty-one of which were residual non-polyadenylated RNAs. The remaining 272

transcripts were polyadenylatedmRNAs present in our libraries generated in the absence of poly-dT primers (Figure S1E), suggesting

these transcripts were also affected by aberrant TSO priming in the standard protocol.

Lysis buffer was prepared according to published Smart-Seq2 protocols,25,26 with the addition of ERCC spike-ins78 to a final dilu-

tion of 1:40,000. Nematodes were individually picked into lysis buffer to achieve a ratio of one individual per 8 mL of buffer for indi-

vidual transcriptomics and 30 individuals per 120 mL of buffer for population transcriptomics. In the latter case, four replicates were

performed. Nematode suspensions were shock-frozen in liquid nitrogen and stored at -80 �C upon lysis, which was carried out for

10 min at 65 �C, followed by enzyme inactivation for 5 min at 85 �C.
On a DynaMag-96 Side Skirted magnetic plate (Invitrogen), 4 mL of streptavidin magnetic beads (Pierce) per sample were washed

three times in 20 mL binding and washing buffer (5 mM Tris-HCl ph 7.5, 0.5 mM EDTA, 1 M NaCl) followed by two washes in 20 mL

Solution A (DEPC-treated 0.1 M NaOH, DEPC-treated 50 mM NaCL) and one wash in 20 mL Solution B (DEPC-treated 0.1 M NaCl).

The beads were resuspended in 4 mL Solution B, 0.2 mL biotinylated poly-dT primer (100 mM; IDT) was added and the beads were

incubated for 15 minutes at room temperature. The beads were blocked with the addition of 0.4 mL yeast tRNA (10 mg/mL; Invitrogen)

and incubated for 15 minutes at room temperature. The supernatant was removed and the beads were resuspended in 4 mL Solution

B with the addition of 0.1 mL RNasin (Promega). Then, 4 mL nematode lysate was added and mRNA was hybridized for 15 minutes at

room temperature. The mRNA containing magnetic beads were washed once with 20 mL 2.5x SuperScriptII first strand buffer (Invi-

trogen) before cDNA libraries were prepared following the Smart-Seq2 protocol.26 cDNA libraries were purified using in-house pre-

pared SPRI paramagnetic beads that mimic AMPure XP beads (Beckman Coulter) with a bead to sample ratio of 0.8. The size
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distribution of the resulting libraries were evaluated using a Tapestation 4150 (Agilent). cDNA concentration was determined by

Quant-it (Invitrogen) on a plate reader (Tecan).

Nextera sequencing libraries were prepared from cDNA through tagmentation and subsequent PCR amplification with indexing

primers as described in the Nextera DNA library prep protocol (Illumina). Nextera sequencing libraries were purified twice using

in-house prepared SPRI paramagnetic beads that mimic AMPure XP beads (Beckman Coulter) with a bead to sample ratio of 0.9.

The size distribution of the resulting libraries were evaluated using a Tapestation 4150 (Agilent). Library concentration was deter-

mined by Quant-it (Invitrogen) on a plate reader (Tecan). Nematode RNAseq libraries were pooled in equal masses. Paired-end Nex-

tera libraries were sequenced on an Illumina NextSeq 500 with high-output 75 cycles v2.5 kits (Illumina) and read lengths of 38 bases

at > 2.0 * 106 reads per sample.

MARS-Seq
A population of 96 individuals were lysed. Each individual’s lysate was split in half and one half was purified using the poly-dT bead

purification with an additional wash in 20 mL low-salt buffer, followed by elution in 4 mL of 10mM TRIS pH 7.5. The other half of each

lysate was left unprocessed. Each single-worm lysate processed by either method was distributed into 4 different wells across two

384-well capture plates containing 2 mL of lysis solution: 0.2% Triton and RNAse inhibitors plus barcoded poly-dT reverse-transcrip-

tion (RT) primers for RNAseq using a Bravo automated liquid handling platform (Agilent).

Single worm RNA libraries were prepared as previously described for the MARS-seq2 scRNA-seq protocol.71 First, mRNA was

converted into cDNA with an oligo containing both the unique molecule identifiers (UMIs) and cell barcodes. 0.15% PEG8000

was added to the RT reaction to increase efficiency of cDNA capture. Unused oligonucleotides were removed by Exonuclease I treat-

ment. cDNAs were pooled (each pool representing the original 384-wells of a MARS-seq plate) and linearly amplified using T7 in vitro

transcription (IVT) and the resulting RNAwas fragmented and ligated to an oligo containing the pool barcode and Illumina sequences,

using T4 ssDNA:RNA ligase. Finally, RNA was reverse transcribed into DNA and PCR amplified. The size distribution and concentra-

tion of the resulting libraries were calculated using a Tapestation 4150 (Agilent) and Qubit (Invitrogen). Single-worm RNAseq libraries

were pooled at equimolar concentration and sequenced to saturation (>=6 reads/UMI, in most cases >10 reads/UMI) on an Illumina

NextSeq 500 sequencer and using high-output 75 cycles v2.5 kits (Illumina).

Tissue-specific RNA Polymerase II knockdown
RNA knockdown of ama-1 and rpb-2was started on day 1 of adulthood and the effects were measured on day 2 and again on day 8.

Perturbation screen
To study extrinsic sources of variation, we collected the gene-expression data describing the organismal effects of changes in tem-

perature—moving individuals from 20 to 25 �C— and changes in diet including complete deprivation of food starting on day 2 of

adulthood and exposure to a lifespan-extending diet of UV-inactivated bacteria. To study intrinsic sources of variation, we selected

94 genes for RNAi knockdown from our gene-expression variation atlas that showed a high-connectivity in the co-expression graph

(Statistical Methods), hypothesizing that these genes’ expression variability early in life might subsequently generate phenotypic vari-

ation later in life. To this corpus of different gene-expression profiles, we also added a canonical lifespan extending intervention in

C. elegans, disruption of insulin/IGF signaling via the daf-2(e1368) allele, to link our results to previous research.

We exposed individuals to 104 different treatments, either at the start of life (daf-2(e1368) and glp-1(e2141)) or the start of adult-

hood (all RNAi knockdowns, changes in diet and temperature). We then allowed populations under treatment until day 8 of adulthood

at which point we harvested mRNA. In our treatment corpus we also included various ‘‘pseudo-time’’ axes that describe the popu-

lation-average change in gene expression between the following days: 1-2, 2-4,4-6,6-8,8-10,10-12, 1-4,2-8,4-6,6-10,8-12.

Lifespan Assays
All lifespan assays were performed either by hand or using the lifespan machine automated imaging platform,53,79 on NGM agar

plates seeded with the OP50-derived NEC937 or HT115 and 10 mg ml�1 5-fluoro-2-deoxyuridine (FUDR). Experiments performed

on UV-inactivated bacteria used 27.5 mg ml�1 FUDR. Figures 2H–2K: NEC937 at 25 �C via automated imaging. Figures 4A–4C:

HT115 at 20 �C; individuals were placed on empty vector (EV) RNAi as eggs and transferred to the specified RNAi at either L4 stage

on day 4 of adulthood as specified. Lifespan data was collected across four replicates, the first done by hand and the remainder via

automated imaging. Figures 5G–5K. HT115 at 20 �C via automated imaging. daf-2(-) indicates AMP101 populations transferred onto

agar plates containing the auxin analog 500uM Potassium 1-Naphthaleneacetate.

Fecundity Assay
Individuals developed together on agar plates seeded with HT115 EV. 12 individuals were exposed to each RNAi condition by sepa-

rate transfer at L4 onto new agar plates seeded with HT115 carrying the respective RNAi construct, and allowed to lay eggs. Each

individual was transferred to a fresh plate every 12 hours until egg laying stopped. The number of live progeny produced by each

individual during each 12-hour interval was obtained by counting the number of larva on each plate.
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Fluorescence Microscopy
To measure body size and germ cell nuclei number, nematode populations were synchronized via egg lay-off on NEC937 or HT115

live bacteria and transferred onto 40.6 mM5-fluoro-20-deoxyuridine NGMplates at the late L4 stage. Nematodes were immobilized in

M9 buffer using 10mM levamisole hydrochloride and then imaged on 3% agarose pads. Three-dimensional tiled confocal images

were acquired on the LSM980 inverted microscope (Zeiss) equipped with the Airyscan2 detector (Zeiss). Whole-body and gonad

masks were drawn to select regions of interest for quantification. Germ cell nuclei were identified using the GFP signal from endog-

enously tagged RPB-2::GFP.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image Quantification
Fluorescence microscopy image analysis was performed in Python and nuclear segmentation was performed using CellPose.73

Quantification of RNA-seq counts
RNA-seq reads were aligned using STAR version 2.6.0c77 to the C. elegansWormbase reference genome (release WS265) modified

to include ERCC spike-ins sequences. Gene counts were quantified using featureCounts version 2.0.0.75 The count matrix was sub-

ject to a detection threshold of 5 counts in at least half of the samples. Genome coverage of reads was computed using BEDTools.72

Specification of tissue-specific transcripts
Genes unique to somatic tissues (i.e. hypodermis, neurons, muscles, intestine) were obtained from published data.45 Somatic unique

genes are defined by the authors as "strongly expressed (logRPKM> 5) and significantly differentially expressed in comparison to the

expression in each of the three other tissues (FDR <= 0.05, logFC > 2 for each comparison)". Genes unique to the germline were

defined using the predicted tissue expression (normalized SVM) score from the same reference. We defined germline-specific genes

as those with a predicted tissue expression score of more than 0.5 in the germline and less than 0.0 in every somatic tissue: hypo-

dermis, neurons, muscles, intestine.

Normalization of RNA-seq counts and estimation of size factors
Themean read counts of a gene i and a sample j are modeled as the product of the truemean gene expression mi, a technical factor nj
and a size factor fj. The technical factor is captured by sample differences present in ERCC spike-ins. The size factor accounts for

differences in the RNA content between samples. Most often, normalization of RNA-seq counts does not distinguish between the

technical and the size factor and simply estimates a normalization factor kj for biological transcripts. This will correspond to the prod-

uct of the size factor and the technical factor. This is the same model as the model described by Vallejos et al.80

log E½Yij� =

�
fjnjmi = kjmi ðmRNAÞ

njmi ðsynthetic spike � inÞ
Normalization factors and technical factors were estimated with scran81 using the filtered count matrix. For technical factors bfj , we

use the subset of the matrix corresponding to ERCC spike-ins. For normalization factors bkj , we only use biological sequences. For

normalization factors specific to tissues, we used the subset of the matrix corresponding to tissue unique genes. To obtain an esti-

mate for the size factor fj, we compute the ratio bnj = bkj= bfj .

We note, as an aside, that our multi-size-factor approach can be further generalized to analyze not only tissue-specific transcripts

but the entire transcriptome because in principle the relative proportion of any mRNA expressed in each tissue can be estimated

based on the gene’s partial correlations with each tissue-specific scale-factor (Figure S2; Methods S1). Using the current data,

such an approach functions well considering only the separation of germline and somatic transcripts (Figure S2) but performance

is limited in distinguishing expression among somatic tissues due to the lower observable variance among those tissues. Further-

more, such analyses require the assumption that tissue-specific transcriptomic changes are somehow representative of global

changes of all transcripts in each tissue—including those expressed across many tissues. Therefore, we focus our current efforts

on the tissue-specific transcriptome.

PCA and Functional Enrichment Analysis
Principal component analysis was performed using log counts with a pseudo-count of 1 added and the prcomp procedure imple-

mented in R with centering and scaling. Hierarchical clustering of samples or genes was performed using Spearman’s correlation

distances and the Ward algorithm. Enrichment analysis was done by using a Fisher exact test using annotations provided by

WormCat,31 WormExp63 and WormMine. All p-values were adjusted for multiple testing using Benjamini-Hochberg.

Relating single and pooled nematode RNAseq counts
In Note S1, we derive an approximation for the distribution of read counts in pooled samples given that individual samples are distrib-

uted according to a negative binomial distribution. This allows us to compute the probability of observing a certain number of read
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counts given our estimated parameters on individual nematodes and the number of pooled nematodes. We compute the probability

of counts Y being 50% away from the true mean of the gene: Pr
�
y;

�
1
1:5m;1:5m

���m;d;n�
From this, we obtain one probability for each gene and pool size, that is, each set of parameters fm;d;ng. If this value is high, it

means that there is a high probability that we observe read counts that are not a good estimate of the population mean. This suggests

we should increase the number of pooled nematodes. To evaluate the quality of our population mean estimates, we considered the

proportion of genes expected to fall outside of the 1:5 m boundary, and compared this theoretic prediction with the empiric data ob-

tained from pooled populations. This model also allows us to predict the pooled population size above which diminishing returns are

encountered in estimating population mean gene expression—defined as the pool size above which the above probability does not

increase substantially.

Transcriptome Scaling Models (TSMs)

Let wk
i be the transcript abundance of gene k measured in individual i, taken from a population of N individuals each with G genes

total. Let yki be the transcript abundance of gene k in individual i, relative to the population mean such that logyi
! =

log wi
�! � log 1

=N
PN

j wj
�!.

Let XR
�!

and XI
!

be the average gene expression count vectors measured in two populations, the first being a reference population

(e.g. the control group) and the second describing a population exposed to some intervention. The fold-change effect of the inter-

vention in gene expression is then logD
!

= logXI
! � logXR

�!
.

TSM analysis estimates scale parameters li that relate individual differences in gene expression yi
! to the effect of interventions D

!

by solving the equation logyi
! = li logD

!
+ ei. Estimates of li are obtained byminimizing the covariance covðlogD!; eiÞ across genes via

the Brent–Dekker method, in R. The fraction of variance explained by the TSM is then calculated from the variance across individuals

of the residuals of each gene g relative to the variance across individuals of the transcript abundance of g, F = 1
=G

PG
g = 1

Varðeeg Þ
VarðygÞ .

Because empirical variance estimates are sensitive to outliers, we also consider a more robust estimator based on 90-10 inter-quan-

tile distance: F� = 1
=G

PG
g = 1

IQ90ðeeg Þ
IQ90ðygÞ

In many cases, intervention effects D
!

do not explain any inter-individual variation in gene-expression, and the l’s fit for each in-

dividual will have no effect on or increase the variance of eg, leading to fractions F equal to or less than 0. In some plots, we crop F

values less than one to zero, as interventions cannot explain less variance than zero. 95% confidence intervals on F estimates were

calculated by running bootstrap replicates over subsets of both genes and individuals.

Consensus scale factor estimates
To obtain a "consensus" scale factor that describes each individual’s location along a consensus scale defined in common by all non-

genetic variation mimetics (NVMs), we calculated the average scale factor for each individual estimated by TSM using each target as

a reference scale.

Estimating residual variance in gene expression
Negative binomial mean m and overdispersion d parameters were estimated via maximum-likelihood in R using the MASS package.

Cohort variance was then derived according to s2 = d m2 +m. To estimate the mean-variance confounding relationship of the under-

lying sequencing method,82 we developed an approach based on residual overdispersion,83 but focused on estimating the running

minimumas a function ofmean expression. All mRNAs and spike-inswere ordered by theirmean expression and binned together into

groups of approximately 200. The minimum variance was estimated for each bin, and these minimum were fit with a polynomial

spline. Such spline fits provide continuous estimates of the minimum variance produced by technical noise as a function of mean

expression. The residual cohort variance of each transcript is then defined as the difference between the transcript’s measured vari-

ance and the minimum variance at that transcript’s mean expression. Confidence intervals on mean and variance estimates are ob-

tained by running bootstrap replicates of full variance calculation including minimum variance estimation across subsets of

individuals.

Statistical tests for per-gene changes in mean and cohort variance in Gene Expression
To estimate differences in the mean and variance of each gene between two sets of single-individual transcriptomes, we repeat the

full residual variance estimation procedure across 250 bootstrap replicate populations. p-values are calculated using a two-sided

studentized bootstrap method. For differential expression analysis of standard batch samples, we obtain p-values using the Wald

test on coefficients estimated using a negative binomial generalized linear model implemented by DESeq2,74 with p-values adjusted

for multiple hypothesis testing using the Benjamini-Hochberg method.
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Weighted correlation network analysis and the identification of a consensus network
For each genotype, we compute the Spearman’s correlation between genes unique to tissues using tissue-specific normalized read

counts. We observed a relationship between the mean counts and the squared gene-gene correlation previously described in bulk

and single-cell RNA-seq data.84 To eliminate low-count biases, we exclude fromanalysis geneswithmean read counts lower than 30.

Analysis focusing on genes primarily expressed in single tissue types focused on 658 well-measured genes. For the whole-transcrip-

tome analyses, between 3,000 and 4,000 transcripts typically passed the threshold in each sample.

We defined a co-expression network such that edges corresponded to squared Spearman correlation values. The square corre-

lation metric lets us group genes closely in the network based on the strength of their interaction, irrespective of whether that inter-

action involves an activating or inhibitory action. To identify communities of genes that are present in either wild-type or daf-2(e1368)

genetic backgrounds, we calculate graphs for each genotype separately and then take the union of both graphs. Communities were

identified in this graph using the InfoMap algorithm76 as implemented by the igraph R package. We excluded communities smaller

than 10 genes.

Our approach to network analysis requires we choose a minimum threshold for gene-pair Spearman’s correlations to be included

in the network analysis. To identify communities robust to this choice of threshold, we tested a range of thresholds between 0.5 and

0.8 in increments of 0.05. We performed network community analysis at each threshold, and then counted the number of times each

gene-pair appeared in the same co-expression group across the different correlation thresholds. These counts formed a square,

symmetric matrix with each element i,j taking values ranging from 1 (genes i,j always clustered together) to 0 (genes i,j never clustered

together). We then clustered this matrix using Ward’s algorithm to identify communities of genes stable across a range of different

correlation thresholds. It is worth noting that a subset of genes were identified as not robustly clustering in a single co-expression

group across different correlation thresholds, so we removed these genes from consideration.

Statistical tests involving communities
To compute confidence intervals of the squared correlations between genes within each community of the consensus network, we

perform 500 bootstraps of normalized read counts and estimate the empirical cumulative distribution function (ECDF) of the lower

triangle of the squared correlation matrix. We summarize these bootstrapped ECDFs by taking the 1% and 99% quantile. During

bootstrapping, we applied a gene-pair Spearman’s correlation threshold of 0.6.

To statistically test if a community present in the consensus network is present in a particular population, we estimate the null dis-

tribution by randomly selecting genes, selecting the same number of genes in that community. We then use the Kolmogorov–Smirnov

statistic to compare the observed ECDF with the ECDF corresponding to the null distribution to obtain a p-value.

To statistically test if correlations of one community are stronger in one condition compared to another, we use aWilcox test on the

squared correlations of the lower triangle of the squared correlation matrix.

Community bootstrap
To test the stability of communities, we run the community detection pipeline on 1000 sets of bootstrapped counts. For every pair-

wise combination of genes, we compute the proportion of times that two genes are in the same community across bootstraps. We

also compare bootstrapped communities and the communities obtained using the original dataset using the maximum Jac-

card index.

Co-expression group cohesion
To quantify the degree to which a set of genes all co-express together between individuals in a cohort, we calculate a quantity we call

their "cohesion": defined as themean across all pairs of genes of the Pearson correlation of each pair’s expression across individuals.

In other words, the cohesion of a set measures the average correlation in expression across a population of any two genes in that set.

Analyzing the relationship between residual co-expression and the effect of interventions
To identify significant correlations between the residual co-expression between two genes and the fold-change response of one gene

in respect to knockdown of the second, we fit a generalized linear model with a log link function and normal residuals using glm in R.

P-values were calculated using the Wald test.

Analysis of fecundity and lifespan
The effect of each RNAi on fecundity was estimated using a simple linear regression model with p-values obtained using the Wald

test. The effect of each RNAi on lifespan was estimated using Accelerated Failure Time (AFT) models in R using the Buckley-James

implementation provided by the RMS package. p-values were obtained form the Wald test. In Figures 4C and 4F, multiple replicate

experiments were performed and in this case RNAi effect and replicate batch effects were modeled as separate covariates in the

multivariable regression AFT model: logðyiÞ = bRNAi Xi + bbatch z+ εi. Device-corrected AFT residuals used for subsequent statistical

analysis were calculated following the approach of Stroustrup et al.52
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Quantifying lifespan variance
Lifespan distributions were fit with Weibull with frailty models using flexsurv in R as described in Stroustrup et al.52 Estimates of

lifespan mean m and variance s2 were obtained from Weibull shape a and scale b parameters according to m = bGð1 + 1 =aÞ and
s2 = b2ðGð1 + 2 =aÞ � Gð1+1=aÞ2ÞwithG as the gamma function. Separately, to acquire non-parametric estimates of disproportional

difference in lifespan variance between two populations that differ inmean lifespan, the residuals of an Accelerated Failure Time (AFT)

model were compared across 200 bootstrap replicates—repeating the full AFT regression on each bootstrap sample population and

calculating the ratio of the variances between groups a and be according to Ds2 =
s2
b

s2a
=

PNb

1
ðyi �mbÞ2=NbPNa

1
ðyi �maÞ2=Na

with Na and Nb as the size and

ma and mb as the means of each population.
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Supplemental figures

Figure S1. A population-scale atlas of non-genetic heterogeneity, related to Figure 1

(A and B) (A) Expression at the rrn-1/2/3 locus in libraries, made using the standard Smart-Seq2 protocol or (B) using Smart-Seq2 with poly-dT primers

omitted.

(legend continued on next page)
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(C) The transcript abundance distribution in Smart-Seq2 libraries, as a fraction of the total library size, for standard Smart-Seq2 (orange) and the new biotinylated

poly-dT (BpdT) protocol. A decreased rrn-3 abundance (blue star) increases the relative abundance of all other transcripts (double blue star).

(D) Differentially amplified transcripts in the BpdT protocol relative to standard Smart-Seq2.

(E) The effect of the BpdT protocol relative to standard Smart-Seq2, compared with the effect of removing poly-dT primers. The BpdT protocol significantly

depletes transcripts that are also significantly upregulated in poly-dT-removed libraries (orange).

(F) The mean-variance relationship of ERCC spike-ins added at a fixed concentration across samples, and thus reporting the technical variability of the

experimental method for two cohorts, collected on day 1 (black), day 8 (red), or days 1 and 8 pooled together (green). The running minimum variance was fit as a

function of the mean for day 1 (black), day 8 (red), and both days pooled together (green).

(G) The mean-variance relationship of all transcripts measured, including mRNA from days 1 and 8 (black, red) and spike-ins from days 1 and 8 (green, orange),

and the running minimum of all transcripts on days 1 and 8 (blue, red).

(H) The distribution of variation across the transcriptome on day 1 (gray) and day 8 (red), with the pooled-variance of all spike-ins overlaid (blue). Inset: the

cumulative distribution function of variation measured across all spike-ins shows a variation of 1 as a reasonable minimum variation measurable using our

approach.

(I) The mean-variance relationship of samples collected using Smart-Seq2 and MARS-seq, showing that MARS-seq provides systematically higher variation

estimates for both spike-ins and mRNA, both with and without bead purification of MARS-seq samples prior to processing.

(J and K) (J) The residual variation of each mRNA, as measured using Smart-Seq2 and MARS-seq, with linear (purple) and spline (blue) fits on samples above the

technical minimum (unshaded area). MARS-seq samples were pre-treated, either using bead purification or (K) without bead purification.

(L) The same analysis, but plotting the average residual-overdispersion estimates for each gene across the bead-purified and unpurified MARS-seq approaches.

(M) Estimates of the effect of aging on each mRNA, as measured using MARS-seq with two different approaches for removing the technical mean-variance

confound. Each transcript was normalized either to the spike-ins specific to that sample’s cohort (y axis) or alternatively normalized to the pooled spike-ins across

both day 1 and day 8 cohorts (x axis). Samples colored by statistical significance, with changes significant using both analytic methods (red), significant only in the

pooled spike-in method (blue), only significant in the cohort-specific spike-in method (green), or significant in neither method (black).

(N) The transcriptomes of 205 individually sequenced samples are compared with 53 pooled samples containing 10+ individuals each. The average expression of

each gene across each set of samples is compared.

(O) The inter-sample variability between the same samples, plotted as a function of pool size. Variability for each sample wasmeasured as the average correlation

distance of each transcript relative to the population-average abundance (statistical methods), estimated separately for mRNA (orange) and synthetic ERCCRNA

spike-in standards (black).

(P) A volcano plot showing genes differentially regulated on average between daf-2(e1368) and wild-type single-individual samples.

(Q)Wild-type (red) and daf-2(e1368) (blue) individuals plotted in respect of their magnitude along the first and second principal components (PCs) derived from the

correlation matrix of single-individual samples. Small points indicate single worms, large points indicate pooled samples.

(R) The same individuals, but using PCs derived from the correlation matrix of pooled samples.

(S) A density plot showing the same changes in mean-variance relative to day 1 as in Figure 1D, but here across a time series of 1,318 individuals sampled every

second day from days 2 until 12 of adulthood. Dotted contour indicates the region outside of which 90% of genes show significant changes in variance.
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Figure S2. Aging involves a decoupling of germline and somatic mRNA content, related to Figure 2

(A) The absolute size of the germline-specific and soma-specific transcriptomes of each individual (points) relative to day 1, with lines connecting the daily means.

Pink square is bootstrap 95% confidence interval of day 12 mean.

(B) The same age-dependent trajectory of germline and somatic scale factors, but this time excluding all transcripts expressed in embryos.85

(C) A diagnostic of the principal-component analysis (PCA) of the single-individual gene-expression matricies for four populations, wild type (solid line) and glp-

1(e2141) (dotted line) individuals on day 1 (black) or day 8 (red) of adulthood, comparing the fraction of gene-expression variance explained for each population by

each principal component (PC).

(D) The Pearson correlation between the effects of germline-specific rpb-2(RNAi) and each PC of either the single-individual gene-expression matrix for the

wildtype (black) or for the glp-1(e2141) (red) population.

(E and F) (E) The correlation between the first PC weights calculated from wild-type individuals on day 1, the average effect of germline-specific ama-1 RNAi

measured on day 8, and (F) the glp-4(bn2) mutation measured on day 1.

(legend continued on next page)
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(G and H) (G) The correlation between the average effect of glp-1(e2141)mutation measured on day 1 of adulthood compared with the PC1 weights of wild-type

individuals on day 1 and (H) on day 8.

(I) The distribution of gene-expression variance across the transcriptome on day 8 for wild-type (black) and germline-ablated glp-1(e2141) populations.

(J) The number of genes whose variance is significantly increased (red), decreased (blue), or not significantly changed (black) by glp-1(e2141) on day 8 in each

tissue. ‘‘Multiple’’ includes all genes expressed in a non-tissue-specific manner.

(K) Histograms showing the change in variance produced by glp-1(e2141) relative to wild type on day 1 and day 8 of adulthood. Colored bars indicate the

frequency of significant changes at the specified magnitude of variance change.

(L) The same type of PCA plot as Figure 1F, but this time showing each individual of both wild-type and glp-1(e2141) populations along PC axes, calculated from

all individuals of both genotypes and all ages.

(M) The Kaplan-Meier survival estimates showing the timing of death (solid) and vigorousmovement cessation (VMC) (dotted) for wild-type (top) and glp-1(e2141)

(bottom) populations.

(N) Each individuals VMC and death times compared.

(O) The Kaplan-Meier curves for VMC comparing wild type (black) and glp-1(e2141) (red).

(P) The Kaplan-Meier curves for the residuals of an AFT regression model fit to VMC times in (O).

(Q) VMC data were fit with Weibull distributions and the parameter estimates are shown with 95% confidence intervals.
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Figure S3. A perturbation screen to identify molecular drivers of non-genetic heterogeneity, related to Figure 3

(A) Transcriptome scaling models (TSMs) align the profile of each individual’s gene expression across the transcriptome (black lines) to the profile of the gene-

expression changes produced by some treatment (pink line) relative to the control (blue line). Scale factors (lambda values) are assigned to each individual.

(B) Many of the same results obtained indirectly using conventional PCA can be obtained more directly using TSMs. In Figure 2, we show that the first principal

component (PC) of the day 8 wild-type cohort explains 40.5% of all gene-expression variance (Figure 2D), and this PC shows a 70.9% correlation with the glp-

1(e2141) effect. We can repeat the same analysis by fitting a TSM to the wild-type day 8 population using glp-1(e2141) as the reference axis. In a young cohort on

day 1, this TSM finds that 10% of all wild-type inter-individual gene-expression variance can be explained by variation along the glp-1(e2141) axis. During aging,

this percentage increases to 26% by day 12, as shown by TSM estimates of the fraction of total gene-expression difference within each age-cohort, explained by

individual variation along the glp-1(e2141) axis, with bootstrap 95% confidence region.

(C) Variation within wild-type day 8 population, including six independent replicate cohorts (black dots) was analyzed via TSM along the day 1 glp-1(e2141) axis.

Two measures of gene-expression variation were calculated, variance and the 90–10 inter-quantile distance, with the fraction of variation explained for each

cohort (black) and the entire pooled population (red) with bootstrap 95% CI. The same TSM was fit to the same pooled population, but with the names of each

gene randomly shuffled in the glp-1(e2141) reference axis (blue).

(D) The effect of applying different minimum gene expression thresholds prior to TSM analysis of the same wild-type day 8 population along the same

glp-1(e2141) axis. Each color shows the results of a TSM fit to a different biological replicate experiment within the larger wild-type dataset.

(E) We can also apply TSMs to the separation we had observed between the axes of inter-individual variation and population-average dynamics during wild-type

aging (Figure 1E). TSM analysis can be directly applied to align individual variation along the pseudo-time axis by setting the treatment to be the average

expression of an aged cohort and the control to be the average expression of a young cohort. In that case, scale factors quantify the relative biological age of each

(legend continued on next page)
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individual between young and aged averages. TSMs fit this way show that individual variation along pseudo-time axis explains much less than 10% of all gene-

expression variance early in life and only rises above 20% by day 8, shown as the fractions of variance explained by pseudo-time TSMs along an axis defined by

consecutive time points (black) or time points separated by 4 days (red). This confirms in a different way our previous result obtained qualitatively by PCA: most

non-genetic differences in aging do not arise from individuals navigating a single stereotyped aging trajectory at different rates.

(F) In a screen of 104 treatments, 52 treatments with the lowest fraction of variance explained within the wild-type day 8 cohort.

(G) All knockdown targets hierarchically clustered according to the pairwise Spearman correlation between each knockdown’s fold-change effects on the

transcriptome as measured on day 8 of adulthood.

(H) A comparison of the fold-effect change in gene expression of representative RNAi-target knockdowns selected from (G): glp-1(e2141), pcn-1(RNAi), nlp-28

(RNAi), and the average gene expression on day 6 relative to day 8.

(I) For the 40 top knockdown target hits from the cross-sectional transcriptome scaling model, which act as non-genetic variation mimetics (NVMs), we plot the

cohort variance of the mRNA of each NVM at 7 time points across adulthood.

(J) To identify any mutual transcriptional regulation of NVMs, the fold-change in expression of each target (top) was measured after application of each treatment

(left), with significant changes marked with black circles.

(K) The directed graph reflecting gene-regulatory relationships identified in co-expression data for all NVMs. Node colors correspond to the tissue of expression,

as before, with line thickness indicating correlation magnitude.

(L) The co-expression between all pairs of hit target genes across cohorts measured on 7 time points across adulthood shows that gene regulation among these

targets is not tightly coupled as one group.

(M) TSMswere fit to the wild-type day 8 population using four different treatments as reference—glp-1(e2141), the pseudo-time difference between days 6 and 8,

pcn-1 (RNAi), and nlp-28 (RNAi). For each gene (points) the fraction of variance explained by individual variation along the reference TSM axis (y axis) is compared

with that gene’s variation in the wild-type day 8 population. TSMmodels tend to explain better the variance of more highly variable genes (red line), but this is not

true for all highly variable genes (blue labels).

(N) Using each RNAi knockdown as a reference, TSMwas fit to the wild-type population on day 8. The correlation of the change in variance across each transcript

was estimated for each pair of scaling model residuals, and hierarchically clustered.

(O) We compare the correlation between each pair of NVM knockdowns (points) in respect of their effect on gene expression across the transcriptome (x axis) and

the correlation between the same NVM knockdown pair in respect of the scale factors assigned by TSMs (y axis) to individuals in the wild-type day 8 cohort. In

doing so, we compare the values plotted in Figures 3C and S3G to the values plotted in Figure 3D, and show that the similarity of all NVM targets in the latter is not

reflected in a similarity in the former (locally estimated scatterplot smoothing [LOESS] fit, red).

(P) The correlation in expression of each gene with the scale factor was calculated. These correlations are plotted as a cumulative distribution function, grouped

by tissue of expression. Genes showing the largest negative (gray shaded) and largest positive (red shaded) correlations are highlighted.

(Q) To understand the common set of gene-expression targets influenced by all NVMs, we then considered all genes whose expression across wild-type in-

dividuals showed a correlation greater than or equal to 70%,with scale factors corresponding to all NVMs (statistical methods). We find that 617 genes, 3% of the

transcriptome, correlate to this extent (Data S4). In particular, we find that the abundance of an individual’s germline-specific genes is strongly negatively

correlated with their scale factor, and the abundance of soma-specific genes is strongly positively correlated. Each individual in the wild-type day 8 population

was ordered according to the mean of the scale factors assigned by all treatments’ transcriptome scaling models. In this panel, we highlight the differential

analysis that compared the top 25% and bottom 25% of individuals to identify gene-expression profiles corresponding to ‘‘high’’ and ‘‘low’’ scale factor in-

dividuals in respect of the entire corpus of NVM treatments, defining a set of fold-changes across the transcriptome that we call ‘‘the effect of increasing the scale

factor’’ (Data S6). The effect of four treatments, glp-1(e2141), the effect of aging between 6 and 8 days, pcn-1(RNAi), and nlp-28 (RNAi) across the transcriptome

are compared with the effect of increasing the scale factor. We conclude that individuals with larger-scale factors have increased ratios of somatic to germline

mRNA content and, vice versa, that individuals with smaller-scale factors have decreased ratios of somatic to germline mRNA content.

(R) This scaling effect was compared with the weights of PC1 of the wild-type day 8 population.

(S) The first principal component (PC) of the corpus of gene-expression changes produced by treatments that are not NVMs—that explain less than 10% of wild-

type variance—compared with the first PC of the wild-type day 8 single-individual cohort. Tissue-specific genes identified by color, hypodermis (green), muscle

(orange), neurons (red), germline (black), and multiple tissues (gray).
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Figure S4. A new class of molecular drivers of non-genetic variation in lifespan, related to Figure 4

(A) The full survival curves for each RNAi knockdown lifespan experiment shown in Figure 4C, showing knockdowns started immediately before the start of

adulthood (L4 larval stage) (blue), or on day 4 of adulthood (red). Empty vector (EV) controls (black) are shown for the L4 treatment (solid) and day 4 (dotted)

conditions. Independent biological replicates are plotted separately.

(B) The AFT regression residuals comparing the lifespan of each RNAi to EV across all experiments.

(legend continued on next page)
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(C) The relative variance of the AFT residuals of all RNAi knockdowns, as in Figure 4F, but in populations exposed to each RNAi starting later, on day 4 of

adulthood. Bootstrap 95% confidence intervals (CIs) are shown.

(D) AFT regressionwas performed to compare the vigorousmovement span (VMC) of individuals exposed to each RNAi and empty vector. AFT estimates quantify

the fold-change in VMC of each RNAi relative to EV, shown with 95% bootstrap CIs.

(E) The change in variance of the residuals from the same AFT regression model fit to VMC times for each RNAi compared with EV, with 95% bootstrap CI.

(F) The effect on the total number of eggs laid for each RNAi knockdown shown in Figure 4G, but for RNAi knockdowns started at the time of hatching.
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Figure S5. A partial decoupling of lifespan mean and variance, related to Figure 5

(A–C) (A) The distribution of pairwise correlation magnitudes (absolute value of co-expression) in gene expression across the transcriptome is compared between

wild-type populations on day 1 (green) and day 8 (red) (B) compared betweenwild-type (red) and daf-2(e1368) (green) populations on day 1 and (C) on day 8. Gray

and black dotted lines represent the distribution of pairwise correlationmagnitudes of the respective distribution (green and red) but with gene identities permuted

to approximate a random matrix.

(D) The fraction of the transcriptome with significantly altered mean and variance (p < 0.001; studentized bootstrap) on day 8 in daf-2(e1368) populations relative

to wild type, in glp-1(e2141) populations relative to wild type, in populations housed at 25�C relative to 20�C, and in populations fed UV-inactivated bacteria

relative to populations fed live bacteria.

(E) Transcriptome scaling models (TSMs) were fit to both wild-type and daf-2(e1368) populations for each NVM gene. Reference RNAi knockdowns were

performed in a wild-type genetic background. Plotted are the fraction of gene-expression variance explained by each reference.

(F) The same analysis as in (E), but this time using reference RNAi knockdowns performed in a daf-2(e1368) background.

(G) The same analysis as in (E), but this time each scaling model was fit using the reference RNAi knockdown matching the genotype of the subject population.

(H) The distribution of pairwise correlation magnitudes (absolute value of co-expression) in gene expression across the transcriptome is compared between

glp-1(e2141) (green) and wild-type (red) populations on day 8.

(I and J) (I) The fold-change in gene-expression mean and (J) variance across the transcriptome between days 1 and 8, comparing the effect of a 5�C increase in

body temperature, from 20�C to 25�C. Genes (points) are colored according to statistically significant changes with age (p < 0.001, Wald test), using the same

colors as in Figure 5A.

(K and L) (K) The distribution of pairwise correlation magnitudes (absolute value of co-expression) in gene expression across the transcriptome is compared

between populations housed life-long at 20�C (green) and 25�C (red) on day 1 and (L) on day 8.

(M) The same as in (E), but comparing TSMs fit to populations at 20�C and 25�C.
(N and O) The same as (I) and (J), but showing the effect of a lifespan-extending change in diet, comparing animals fed live bacteria to those fed UV-inactivated

bacteria.

(P and Q) (P) The same as in (K) but comparing populations fed life-long live (green) or UV-inactivated (red) bacteria on day 1 or (Q) on day 8.

(R) The same as in (M), but comparing TSMs fit to populations on day 8 fed life-long live (green) or UV-inactivated (red) bacteria.

ll
Article



Figure S6. Inter-individual heterogeneity within cohorts can be used to predict the effect of interventions on aging, related to Figure 6

(A) The number of genes identified in the RNA sequencing data (first row), the number of genes exceeding the minimum abundance threshold (second row), the

number of tissue-specific genes used for tissue-specific regression (third row), and the number of genes found to exist within co-expression groups (fourth row).

(B) Across 1,000 bootstrap replicates across individuals from the day 8 wild-type cohort, the frequency of co-occurrence of each pair of genes in the same co-

expression group—on a scale from 0 (white), where two genes never are assigned to the same co-expression group, to 1 (red), where two genes always fall within

the same co-expression group. Well-defined separation between each co-expression groups’ members indicates a robust group assignment.

(C) Across the day 8 wild-type population, the mean abundance of co-expression group members was calculated for each group in each individual. Then, the

correlation between group abundances across individuals was estimated, and these correlations were hierarchically clustered and plotted as a heatmap.

(D) The cohesion of each group—the average covariation among all pairs of genes in the group—was estimated for each time point of the wild-type time series.

(E) The initial group cohesion and its rate of change with age, based on linear fits of the cohesion time series for each group. Bars mark standard errors.

(F) Histograms show the tissue localization of the members of each co-expression group.

(G) A linear regression model was fit to compare the average expression of all members of a co-expression group in each wild-type individual to the NVM scale

factor assigned to that individual, across the day 8 cohort. The effect sizes measure the fold-change in expression on average across groupmembers associated

with a fold-change increase in scale factor—large magnitudes indicate a strong correlation between an individual’s scale factor and that individual’s average

(legend continued on next page)
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expression of the co-expression group. The regression was run using gene-expression data of co-expression group members before (x axis) and after (y axis)

tissue-compositional normalization.

(H) Results from the same linear regression models, but this time plotting the coefficient of determination (r2) of the model rather than the effect size for each co-

expression group.

(I) To understand why the residual covariation matrix can be used to predict the effects of interventions on aging, we performed a series of additional statistical

diagnostics. First, we considered the possibility that our predictions depended on gene-expression changes in a particular tissue. We find that knowing the tissue

localization of a transcript does not help us predict its response to interventions on aging, as shown by the coefficient of determination of the full linear regression

model (log(RNAi_effect) � co-expression + tissue) compared with the partial r-squared explained by the reduced model (log(RNAi_effect) � co-expression) for

each RNAi-target knockdown (colored points). The horizontal dotted line indicates the level where partial r-squared/full r-squared == 1, i.e., the case where tissue

localization of transcripts are not informative about the effect of RNAi knockdown.

(J) So, we then performed a regression in which each transcript measured in the RNAi knockdown experiment was labeled according to its membership in a

co-expression group identified in the wild-type aged population. Labeling transcripts in this way greatly improved our ability to predict their response to

interventions in aging, shown using the same plot as in (I), but here comparing the partial model (log(RNAi_effect) � co-expression) to the full model

(log(RNAi_effect)� co-expression + co-expression-group). The horizontal dotted line indicates the level where partial r-squared/full r-squared == 1, i.e., the case

where collective changes among all group members is not informative about the effect of RNAi knockdown.

(K)Whenwe include group labels in our prediction model, the residual co-expression matrix then contributes no additional benefit over the labels alone, as shown

by the effects of RNAi knockdown on each community’s members in the linear model (log(RNAi_effect)� co-expression + co-expression-group), averaged over

the top hits from regression analysis where co-expression alone explained 25% of variation in log(RNAi effect). ‘‘none’’ indicates the effect of a gene not being in

any co-expression group. The ‘‘correlation’’ parameter models the effect of the pairwise covariation between two genes—a small value indicates that this

measurement of covariation does not have additional predictive power beyond the co-expressionmembership group of the two genes considered. From this, we

conclude that the residual covariation matrix can be used to predict intervention on aging because the co-expression groups we identify in aged cohorts act as

gene-expression modules that respond cohesively to RNAi. In other words, the physiologic axes of non-genetic, inter-individual variation observable in a single

aged cohort are the same physiologic axes along which individuals respond to interventions in aging. Therefore, we can use the former to predict the latter.
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